VIII. ESCOAMENTO SUPERFICIAL

8.1. Introdução

Das fases básicas do ciclo hidrológico, talvez a mais importante para o engenheiro seja a do escoamento superficial, que é a fase que trata da ocorrência e transporte da água na superfície terrestre, pois a maioria dos estudos hidrológicos está ligada ao aproveitamento da água superficial e à proteção contra os fenômenos provocados pelo seu deslocamento.

Foi discutido que a existência da água nos continentes é devida à precipitação. Assim, da precipitação que atinge o solo, parte fica retida quer seja em depressões quer seja como película em torno de partículas sólidas.

Do excedente da água retida, parte se infiltra e parte escoa superficialmente. Pode ocorrer que a água infiltrada venha, posteriormente, aflorar na superfície como fonte para novo escoamento superficial. O escoamento superficial abrange desde o excesso de precipitação que ocorre logo após uma chuva intensa e se desloca livremente pela superfície do terreno, até o escoamento de um rio, que pode ser alimentado tanto pelo excesso de precipitação como pelas águas subterrâneas.

8.2. Fatores que Influenciam no Escoamento Superficial

Os fatores podem ser de natureza climática, relacionados à precipitação ou de natureza fisiográfica ligados às características físicas da bacia. Dentre os fatores climáticos destacam-se a intensidade e a duração da precipitação, pois quanto maior a intensidade, mais rápido o solo atinge a sua capacidade de infiltração provocando um excesso de precipitação que escoará superficialmente.

A duração também é diretamente proporcional ao escoamento, pois para chuvas de intensidade constante, haverá maior oportunidade de escoamento quanto maior for a duração. Outro fator climático importante é o da precipitação antecedente, pois uma precipitação que ocorre quando o solo está úmido devido a uma chuva anterior, terá maior facilidade de escoamento.

Dentre os fatores fisiográficos os mais importantes são a área, a forma, a permeabilidade e a capacidade de infiltração, e a topografia da bacia. A influência da área é clara, pois sua extensão está relacionada à maior ou menor quantidade de água que ela pode captar.

A permeabilidade do solo influi diretamente na capacidade de infiltração, ou seja, quanto mais permeável for o solo, maior será a quantidade de água que ele pode absorver, diminuindo assim a ocorrência de excesso de precipitação. Outros fatores importantes são as obras hidráulicas construídas nas bacias, tal como uma barragem que, acumulando a água em um reservatório, reduz as vazões máximas do escoamento superficial e retarda a sua propagação. Em sentido contrário, podese retificar um rio aumentando a velocidade do escoamento superficial.

8.3. Grandezas que Caracterizam o Escoamento Superficial

Vazão (Q): A vazão, ou volume escoado por unidade de tempo, é a principal grandeza que caracteriza um escoamento. Normalmente é expressa em metros cúbicos por segundo (m3.s⁻¹) ou em litros por segundo (L. s⁻¹).

 vazão média diária: É a média aritmética das vazões ocorridas durante o dia (quando se dispõe de aparelho registrador – linígrafo, Figura 7.1); o mais comum é a média das vazões das 7 e 17 horas (horas de leitura do nível da água – linímetro, Figura 8.1).

Figura 8.1: Estação Fluviométrica com réguas linimétricas e linígrafo.

• vazão específica: Vazão por unidade de área da bacia hidrográfica; m³. s¹.km²², L s¹.km²², L s¹.ha¹¹. É uma forma bem potente de expressar a capacidade de uma bacia em produzir escoamento superficial e serve como elemento comparativo entre bacias. É comum ter-se como dados que caracterizam uma bacia, as vazões máximas, médias, mínimas, Q7-10, Q95%, em intervalos de tempo tais como hora, dia mês e ano.

8.3.2. Coeficiente de Escoamento Superficial (C)

Coeficiente de escoamento superficial, ou Coeficiente Runoff, ou coeficiente de deflúvio é definido como a razão entre o volume de água escoado superficialmente e o volume de água precipitado. Este coeficiente pode ser relativo a uma chuva isolada ou relativo a um intervalo de tempo onde várias chuvas ocorreram.

Conhecendo-se o coeficiente de deflúvio para uma determinada chuva intensa de uma certa duração, pode-se determinar o escoamento superficial de outras precipitações de intensidades diferentes, desde que a duração seja a mesma.

A Tabela 8.1 apresenta valores do coeficiente de escoamento (C), em função do tipo de solo, declividade e cobertura vegetal.

Tabela 8.1: Coeficiente de escoamento superficial

Declividade (%)	Solos Arenosos	Textura Média	Solos Argilosos
	Matas		
0-2,5%	0,15	0,13	0,12
2,5-5%	0,18	0,15	0,14
5-10%	0,20	0,18	0,16
10-20%	0,22	0,20	0,18
20-40%	0,25	0,22	0,20
	Pastagens		
0-2,5%	0,31	0,27	0,25
2,5-5%	0,38	0,32	0,30
5-10%	0,43	0,37	0,34
10-20%	0,48	0,41	0,38
20-40%	0,53	0,45	0,42
	Culturas Perenes		
0-2,5%	0,40	0,34	0,31
2,5-5%	0,48	0,41	0,38
5-10%	0,54	0,46	0,43
10-20%	0,61	0,52	0,48
20-40%	0,67	0,56	0,53

8.3.3. Tempo de Concentração (tc)

Como definido anteriormente, o to mede o tempo gasto para que toda a bacia contribua para o escoamento superficial na seção considerada. O tempo de concentração pode ser estimado por vários métodos, os quais resultam em valores bem distintos. Dentre eles, destacam-se:

Método Gráfico

Consiste em traçar trajetórias perpendiculares as curvas de nível de diferentes pontos dos divisores até a seção de controle.

$$tc = \sum tp_{max}$$
 em que,

tc = tempo de concentração, em s; e

tp = tempo de percurso, em s.

$$tp = \frac{L}{v}$$
 onde,

L = comprimento da trajetória do escoamento, em m; e

v = velocidade de escoamento, em m.s⁻¹.

$$v=f\cdot \sqrt{I} \ \text{em que,}$$

f = fator de escoamento em função do tipo de superfície e,

I = declividade das trajetórias, em %.

Equação de Kirpich

$$tc = \left(0.87 \cdot \frac{L}{H}\right)^{0.385} \text{ em que,}$$

tc = tempo de concentração, em h;

L = comprimento do talvegue principal, em km; e

H = desnível entre a parte mais elevada e a seção de controle, em m.

Equação de Ventura

$$tc = 0.127 \cdot \sqrt{\frac{A}{I}}$$
 em que,

A = área da bacia, em km2; e

I = declividade média do curso d'água principal, em m/m.

Os valores de tc obtidos por estas equações diferem entre si. A equação mais utilizada tem sido a de Kirpich e o motivo se evidencia pelo fato de que normalmente ela fornece valores menores para tc, o que resulta numa intensidade de chuva maior, por consequência, uma maior vazão de cheia.

8.3.4. Tempo de Recorrência (T_R)

É o período de tempo médio em que um determinado evento (neste caso, vazão) é igualado ou superado pelo menos uma vez. A recomendação do número de anos a ser considerado é bastante variada: alguns autores recomendam período de retorno de 10 anos, para projetos de conservação de solos. Outros recomendam o período de retorno de 10 anos somente para o dimensionamento de projetos de saneamento agrícola, em que as enchentes não trazem prejuízos muito expressivos. E ainda, para projetos em áreas urbanas ou de maior importância econômica, recomenda-se utilizar o período de retorno de 50 ou 100 anos.

8.3.5. Nível de Água (h)

Uma das medidas mais fáceis de serem realizadas em um curso d'água é expressa em metros e se refere à altura atingida pelo nível d'água em relação a um nível de referência. Normalmente as palavras cheia e inundação estão relacionadas ao nível d'água atingido. Denominar-se-á **cheia** a uma elevação normal do curso d'água dentro do seu leito, e **inundação** à elevação não usual do nível, provocando transbordamento e possivelmente prejuízos.

8.4. Métodos de Estimativa do Escoamento Superficial

Os métodos de estimativa do escoamento superficial podem ser divididos em quatro grupos conforme a seguir:

Medição do Nível de Água

A estimativa do escoamento superficial por meio de medição do nível de água é realizada em postos fluviométricos, onde a altura do nível de água é obtida com auxílio das réguas linimétricas (Figura 8.1) ou por meio dos linígrafos (Figura 8.1). De posse das alturas pode-se estimar a vazão em uma determinada seção do curso d'água por meio de uma curva-chave. A esta curva relaciona uma altura do nível do curso d'água, a uma vazão, conforme Figura 8.1.

- É o mais preciso;
- Requer vários postos fluviométricos

Figura 7.1: Réguas linimétricas

Modelo Chuva-Vazão Calibrados

Hidrógrafa, Hidrograma, ou Fluviograma é a representação gráfica da variação da vazão em relação ao tempo. Um hidrograma mostrando as vazões médias diárias para um ano é mostrado na Figura 8.2

Figura 8.2: Registros de descargas diárias (Usina Barra Bonita – rio Tietê).

Isolando-se picos do hidrograma podem-se analisar alguns fenômenos de interesse em Hidrologia. Na Figura seguinte é apresentado o ietograma (hidrógrafa de uma chuva isolada) de uma precipitação ocorrida na bacia e a curva de vazão correspondente registrada em uma seção de um curso d'água. A contribuição total para o escoamento na seção considerada é devido:

- À precipitação recolhida diretamente pela superfície livre das águas;
- Ao escoamento superficial direto (incluindo o escoamento subsuperficial);
- Ao escoamento básico (contribuição do lençol de água subterrânea).

Analisando-se a Figura 8.3 (hidrógrafa), é possível distinguir quatro trechos distintos. O primeiro, até o ponto A, em que o escoamento é devido unicamente à contribuição do lençol freático (escoamento subterrâneo ou de base) e por causa disto, a vazão está decrescendo. O segundo trecho é devido à contribuição da parcela de precipitação que excede à capacidade de infiltração.

Há a formação do escoamento superficial direto o qual promove aumento da vazão à medida que aumenta a área de contribuição para o escoamento.

- Boa precisão
- Métodos baseados na hidrógrafa (Hidrograma Unitário)

• Modelo Chuva-Vazão Não Calibrado

A estimativa da vazão do escoamento produzido pelas chuvas em determinada área é fundamental para o dimensionamento dos canais coletores, interceptores ou drenos. Existem várias equações para estimar esta vazão, sendo muito conhecido o uso da equação racional. Método desenvolvido pelo irlandês Thomas Mulvaney, 1851. Seu uso é limitado a pequenas áreas (até 80 ha).

Este método é utilizado quando se tem muitos dados de chuva e poucos dados de vazão. A equação racional estima a vazão máxima de escoamento de uma determinada área sujeita a uma intensidade máxima de precipitação, com um determinado tempo de concentração, a qual é assim representada:

$$Q = \frac{C \cdot I \cdot A}{360}$$
 onde:

Q = vazão máxima de escoamento, em m³/s;

C = coeficiente de Runoff;

I = intensidade média máxima de precipitação, em mm/h

A = área de contribuição da bacia, em ha.

Método Racional Modificado

Este método deve ser utilizado para áreas maiores que 80 ha até 200 ha.

$$Q = \frac{C \cdot I \cdot A}{360} \cdot D$$
 e $D = 1 - 0,009 \frac{L}{2}$ em que:

L = comprimento axial da bacia, km.

Método de I - Pai – Wu

Método desenvolvido em 1963 sendo aplicado a áreas maiores que 200 há. até 20.000 ha.

$$Q = \frac{C^* \cdot I \cdot A}{360} \cdot k , \qquad C^* = \frac{2}{1+F} \cdot \frac{C}{\frac{4}{2+F}} \qquad \text{e} \qquad F = \frac{L}{\sqrt{\frac{A}{\pi}}} \qquad \text{em que} :$$

F = fator de ajuste relacionado com a forma da bacia;

L = comprimento axial da bacia, em km;

A = área da bacia, em ha; e

K = coeficiente de distribuição espacial da chuva espacial da chuva.